0=-16t^2+116*0+101

Simple and best practice solution for 0=-16t^2+116*0+101 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+116*0+101 equation:



0=-16t^2+116*0+101
We move all terms to the left:
0-(-16t^2+116*0+101)=0
We add all the numbers together, and all the variables
-(-16t^2+116*0+101)=0
We get rid of parentheses
16t^2-101-116*0=0
We add all the numbers together, and all the variables
16t^2-101=0
a = 16; b = 0; c = -101;
Δ = b2-4ac
Δ = 02-4·16·(-101)
Δ = 6464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6464}=\sqrt{64*101}=\sqrt{64}*\sqrt{101}=8\sqrt{101}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{101}}{2*16}=\frac{0-8\sqrt{101}}{32} =-\frac{8\sqrt{101}}{32} =-\frac{\sqrt{101}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{101}}{2*16}=\frac{0+8\sqrt{101}}{32} =\frac{8\sqrt{101}}{32} =\frac{\sqrt{101}}{4} $

See similar equations:

| 8x+6+7x+(-10)+-(5x)+8= | | 6x-2x=5x-4x(3x-2x) | | x2=43−x2 | | 12-1.7v=4.15. | | –6(y+9)+1=–4y–11 | | x3-3x2+12=0 | | 5.2+y=6.4 | | (10v)/5-6=2 | | t+9=49 | | 2+(3r)/3=5 | | 6x/3=6+4x(2-4x) | | 4+-6x=3 | | 6k+12+9=9 | | 6x-4+2x+12=180 | | (15g)/2=30 | | -5j−-6j=-12 | | (12x)/6=4 | | 6+9p=33 | | (2w)/3=4 | | b-3.5=7.2 | | 7.8-4x=28.5+5x | | 10+9h=18+7h | | 31.2=-5.2r | | 6.9=d/3 | | 18a-5=13 | | 2.7z=-24.3 | | -4.2n=-16.8 | | |9+6|=-6x+7 | | n÷33=4÷11 | | 11=2x+-13 | | 4x^2-11x+22=6x+7 | | x+37+81=180 |

Equations solver categories